Current Affairs-Topics

Solar Energetic Electrons (SEEs)

The Solar Orbiter mission, launched in 2020 as a joint venture between ESA and NASA, has made a breakthrough in understanding Solar Energetic Electrons (SEEs). This finding is highly important for SSC aspirants, as it combines space science, technology, and current affairs. The mission has provided the first direct link between solar events like solar flares and coronal mass ejections (CMEs) with Solar Energetic Electrons (SEEs).

Such insights help predict space weather that affects Earth’s technology.

What are Solar Energetic Electrons (SEEs)?

  • Solar Energetic Electrons (SEEs) are high-energy solar electrons released during violent solar events.

  • These energetic particles travel through the solar wind and contribute to space weather energetic electrons.

  • The study of Solar Energetic Electrons (SEEs) is vital because they can disrupt satellites, GPS navigation, communication systems, and even pose risks to astronauts.

Solar Orbiter Mission Achievements

  1. First spacecraft to image the Sun’s poles – The Solar Orbiter captured unique images never seen before.

  2. Closer orbit than previous missions – Allowing detailed study of solar radiation and the solar wind.

  3. Detected over 300 bursts of Solar Energetic Electrons (SEEs) between November 2020 and December 2022.

  4. Equipped with ten instruments – Measuring Sun particle emissions and observing the solar surface remotely.

The mission, therefore, gives crucial insights into the sources of Solar Energetic Electrons (SEEs).

Types of Solar Energetic Electrons (SEEs)

There are two major types of Solar Energetic Electrons (SEEs):

  1. SEEs from Solar Flares

    • Solar flares are explosions on the Sun’s surface.

    • They release energetic particles rapidly, causing impulsive events.

    • These Solar Energetic Electrons (SEEs) are detected quickly after the flare.

  2. SEEs from Coronal Mass Ejections (CMEs)

    • Solar electrons from CMEs are released gradually but carry higher energy.

    • CMEs are massive eruptions of plasma and magnetic fields, making their Solar Energetic Electrons (SEEs) more dangerous.

This distinction also helps explain the difference between Solar Energetic Electrons and protons, since both behave differently in solar particle events.

Tracing the Source of Solar Energetic Electrons (SEEs)

The Solar Orbiter directly flew through streams of Solar Energetic Electrons (SEEs) while also observing their sources.

Scientists found:

  • A delay between solar flares and energetic electron detection, due to the time required for particles to escape and turbulence in space.

  • This gave the first strong proof that Solar Energetic Electrons (SEEs) are linked to specific solar events such as flares and CMEs.

This research also supports predicting space weather using Solar Energetic Electrons (SEEs).

Implications for Earth and Technology

The study of Solar Energetic Electrons (SEEs) is vital because:

  • Space weather, including solar storms, solar flares, CMEs, and solar radiation, directly impacts Earth.

  • Solar Energetic Electrons (SEEs) and their effect on satellites can disrupt communication networks and GPS.

  • Power grids on Earth can fail during intense solar energetic particle events.

  • Astronauts are at high risk from space weather energetic electrons.

Hence, understanding Solar Energetic Electrons (SEEs) is crucial for safety in space exploration and protecting modern technology.

Future Prospects of Solar Orbiter

The Solar Orbiter will continue studying Solar Energetic Electrons (SEEs) to answer key questions:

  • How is the Sun’s corona heated to millions of degrees?

  • What role do SEEs and solar flares play in the Sun’s 11-year magnetic cycle?

  • How are the solar wind and energetic electrons accelerated to high speeds?

  • How can we improve the forecasting of Sun particle emissions that trigger solar storms?

The mission ensures better prediction of Solar Energetic Electrons (SEEs) and their impacts.

Final Thoughts

The Solar Orbiter mission has significantly advanced our understanding of Solar Energetic Electrons (SEEs) and their origins. By linking solar flares and coronal mass ejections (CMEs) to energetic particles, scientists now have clearer insights into space weather phenomena. Observing solar electrons from CMEs and impulsive events allows for better prediction of satellite disruptions, solar storms, and solar radiation impacts.

The detection of Solar Energetic Electrons (SEEs) highlights the complex dynamics of the solar wind and Sun particle emissions. As research continues, these findings will enhance our ability to forecast space weather, protect technology, and deepen our knowledge of the Sun’s behavior.

Ultimately, studying Solar Energetic Electrons (SEEs) is essential for understanding how the Sun shapes the space environment around Earth.

More Related Articles

AI Innovation Hub in Telangana

The Government of Telangana has taken a decisive step to position the state at the forefront of emerging technologies with the creation of the AI Innovation Hub in Telangana. Spearheaded by IT &am

China’s Thorium Molten Salt Reactor

In a groundbreaking development in nuclear power, China has successfully carried out the first-ever thorium-to-uranium fuel conversion inside a Thorium Molten Salt Reactor (TMSR). Announced on 3 N

Interstellar Comet 3I/ATLAS

The appearance of the interstellar comet 3I/ATLAS has opened a new chapter in the study of space comets and cosmic bodies travelling through the universe. This rare interstellar comet brightened r

Robotaxi Market Growth 2025–2030

The robotaxi market is witnessing a historic transformation as Uber Technologies and Nvidia announce a large-scale partnership to develop and deploy 100,000 autonomous robotaxis by 2027. This

Bharat 6G Vision and Mission 2030

Bharat 6G Vision is India’s ambitious roadmap to lead the world in next-generation telecom innovation and become a global co-creator in 6G technology. The vision aligns with the Viksit Bhara

NASA Confirms 2025 PN7 Asteroid

Earth has a new space companion — a small asteroid named 2025 PN7, recently confirmed by NASA. While it is not a real moon, this near-Earth object travels around the Sun in almost the s

ChatGPT Atlas Browser

In a bold expansion of its AI ecosystem, OpenAI has launched the ChatGPT Atlas browser, a revolutionary AI-powered web browser for macOS. Unlike traditional web browsers, the ChatGPT Atlas browser

BioNEST and Clean Technology India

The Government of India is working hard to promote Clean Technology India to achieve sustainable development and zero emissions by 2047. Finance Minister Nirmala Sitharaman inaugurated the BioNEST

IMAP NASA Mission Explained

The IMAP NASA mission is one of the most exciting space exploration projects of 2025. Launched in September 2025, the mission aims to explore the heliosphere, a vast protective bubble created by t

DoT FIU-IND MoU Explained

India has taken a significant step in combating cybercrimes and financial fraud by signing the DoT FIU-IND MoU. This partnership between the Department of Telecommunications (DoT) and the Financia

Toppers

anil kumar
Akshay kuamr
geeta kumari
shubham