- 17 Apr,2025
- 16 Apr,2025
- 15 Apr,2025
- 14 Apr,2025
- 11 Apr,2025
- 09 Apr,2025
- 08 Apr,2025
- 07 Apr,2025
- 05 Apr,2025
- 03 Apr,2025
- 02 Apr,2025
- 01 Apr,2025
- 31 Mar,2025
- 29 Mar,2025
- 28 Mar,2025
- 27 Mar,2025
- 20 Mar,2025
- 19 Mar,2025
- 18 Mar,2025
- 07 Feb,2025
- 03 Feb,2025
- 01 Feb,2025
- 31 Jan,2025
- 30 Jan,2025
- 29 Jan,2025
- 28 Jan,2025
- 27 Jan,2025
- 25 Jan,2025
- 24 Jan,2025
- 23 Jan,2025
- 22 Jan,2025
- 21 Jan,2025
- 20 Jan,2025
- 18 Jan,2025
- 17 Jan,2025
- 16 Jan,2025
- 15 Jan,2025
- 14 Jan,2025
- 13 Jan,2025
- 11 Jan,2025
- 10 Jan,2025
- 09 Jan,2025
- 07 Jan,2025
- 04 Jan,2025
- 03 Jan,2025
- 01 Jan,2025
- 30 Dec,2024
- 28 Dec,2024
- 14 Dec,2024
- 13 Dec,2024
- 12 Dec,2024
- 11 Dec,2024
- 10 Dec,2024
- 09 Dec,2024
- 07 Dec,2024
- 06 Dec,2024
- 05 Dec,2024
- 04 Dec,2024
- 03 Dec,2024
- 02 Dec,2024
- 30 Nov,2024
- 29 Nov,2024
- 27 Nov,2024
- 26 Nov,2024
- 21 Nov,2024
- 20 Nov,2024
- 19 Nov,2024
- 18 Nov,2024
- 16 Nov,2024
- 14 Nov,2024
- 13 Nov,2024
- 09 Nov,2024
- 08 Nov,2024
- 07 Nov,2024
- 06 Nov,2024
- 05 Nov,2024
- 04 Nov,2024
- 02 Nov,2024
- 30 Oct,2024
- 29 Oct,2024
- 26 Oct,2024
- 25 Oct,2024
- 24 Oct,2024
- 22 Oct,2024
- 21 Oct,2024
- 19 Oct,2024
- 17 Oct,2024
- 16 Oct,2024
- 15 Oct,2024
- 14 Oct,2024
- 12 Oct,2024
- 11 Oct,2024
- 10 Oct,2024
- 09 Oct,2024
- 08 Oct,2024
- 05 Oct,2024
- 04 Oct,2024
- 03 Oct,2024
- 02 Oct,2024
- 01 Oct,2024
- 30 Sep,2024
- 28 Sep,2024
- 27 Sep,2024
- 26 Sep,2024
- 25 Sep,2024
- 24 Sep,2024
- 23 Sep,2024
- 21 Sep,2024
- 20 Sep,2024
- 19 Sep,2024
- 18 Sep,2024
- 17 Sep,2024
- 16 Sep,2024
- 14 Sep,2024
- 13 Sep,2024
- 12 Sep,2024
- 11 Sep,2024
- 10 Sep,2024
- 07 Sep,2024
- 06 Sep,2024
- 05 Sep,2024
- 04 Sep,2024
- 03 Sep,2024
- 02 Sep,2024
- 31 Aug,2024
- 30 Aug,2024
- 29 Aug,2024
- 28 Aug,2024
- 27 Aug,2024
- 26 Aug,2024
- 24 Aug,2024
- 23 Aug,2024
- 22 Aug,2024
- 21 Aug,2024
- 20 Aug,2024
- 19 Aug,2024
- 17 Aug,2024
- 16 Aug,2024
- 14 Aug,2024
- 13 Aug,2024
- 12 Aug,2024
- 10 Aug,2024
- 09 Aug,2024
- 08 Aug,2024
- 07 Aug,2024
- 06 Aug,2024
- 05 Aug,2024
- 03 Aug,2024
- 02 Aug,2024
- 01 Aug,2024
- 31 Jul,2024
- 30 Jul,2024
- 29 Jul,2024
- 27 Jul,2024
- 26 Jul,2024
- 25 Jul,2024
- 24 Jul,2024
- 23 Jul,2024
- 22 Jul,2024
- 20 Jul,2024
- 19 Jul,2024
- 18 Jul,2024
- 17 Jul,2024
- 16 Jul,2024
- 15 Jul,2024
- 13 Jul,2024
- 12 Jul,2024
- 11 Jul,2024
- 10 Jul,2024
- 09 Jul,2024
- 08 Jul,2024
- 06 Jul,2024
- 05 Jul,2024
- 04 Jul,2024
- 03 Jul,2024
- 02 Jul,2024
- 01 Jul,2024
- 29 Jun,2024
- 28 Jun,2024
- 27 Jun,2024
- 25 Jun,2024
- 22 Jun,2024
- 21 Jun,2024
- 20 Jun,2024
- 15 Jun,2024
- 14 Jun,2024
- 13 Jun,2024
- 12 Jun,2024
- 11 Jun,2024
- 10 Jun,2024
- 08 Jun,2024
- 07 Jun,2024
- 06 Jun,2024
- 05 Jun,2024
- 04 Jun,2024
- 03 Jun,2024
- 01 Jun,2024
- 30 May,2024
- 28 May,2024
- 24 May,2024
- 23 May,2024
- 22 May,2024
- 21 May,2024
- 20 May,2024
- 18 May,2024
- 17 May,2024
- 16 May,2024
- 15 May,2024
- 09 May,2024
- 06 May,2024
- 04 May,2024
- 03 May,2024
- 02 May,2024
- 01 May,2024
- 30 Apr,2024
- 26 Apr,2024
- 25 Apr,2024
- 24 Apr,2024
- 23 Apr,2024
- 22 Apr,2024
- 20 Apr,2024
- 19 Apr,2024
- 18 Apr,2024
- 17 Apr,2024
- 16 Apr,2024
- 15 Apr,2024
- 13 Apr,2024
- 12 Apr,2024
- 10 Apr,2024
- 09 Apr,2024
- 06 Apr,2024
- 05 Apr,2024
- 03 Apr,2024
- 02 Apr,2024
- 01 Apr,2024
- 30 Mar,2024
- 29 Mar,2024
- 28 Mar,2024
- 27 Mar,2024
- 26 Mar,2024
- 23 Mar,2024
- 22 Mar,2024
- 21 Mar,2024
- 20 Mar,2024
- 19 Mar,2024
- 18 Mar,2024
- 16 Mar,2024
- 15 Mar,2024
- 14 Mar,2024
- 13 Mar,2024
- 12 Mar,2024
- 09 Mar,2024
- 08 Mar,2024
- 07 Mar,2024
- 06 Mar,2024
- 05 Mar,2024
- 04 Mar,2024
- 02 Mar,2024
- 01 Mar,2024
- 29 Feb,2024
- 28 Feb,2024
- 27 Feb,2024
- 24 Feb,2024
- 23 Feb,2024
- 22 Feb,2024
- 21 Feb,2024
- 20 Feb,2024
- 19 Feb,2024
- 17 Feb,2024
- 16 Feb,2024
- 15 Feb,2024
- 14 Feb,2024
- 12 Feb,2024
- 10 Feb,2024
- 09 Feb,2024
- 07 Feb,2024
- 06 Feb,2024
- 01 Feb,2024
- 31 Jan,2024
- 30 Jan,2024
- 24 Jan,2024
- 22 Jan,2024
- 16 Jan,2024
- 15 Jan,2024
- 13 Jan,2024
- 12 Jan,2024
- 11 Jan,2024
- 10 Jan,2024
- 09 Jan,2024
- 08 Jan,2024
- 05 Jan,2024
- 03 Jan,2024
- 02 Jan,2024
- 30 Dec,2023
- 29 Dec,2023
- 27 Dec,2023
- 25 Dec,2023
- 23 Dec,2023
- 22 Dec,2023
- 09 Dec,2023
- 08 Dec,2023
- 07 Dec,2023
- 06 Dec,2023
- 05 Dec,2023
- 04 Dec,2023
- 02 Dec,2023
- 01 Dec,2023
- 29 Nov,2023
- 28 Nov,2023
- 27 Nov,2023
- 26 Nov,2023
- 25 Nov,2023
- 24 Nov,2023
- 23 Nov,2023
- 22 Nov,2023
- 21 Nov,2023
- 20 Nov,2023
- 19 Nov,2023
- 17 Nov,2023
- 14 Nov,2023
- 11 Nov,2023
- 25 Oct,2023
- 19 Oct,2023
- 14 Jan,2023
- 01 Jan,1970
- 12 Dec,0024
Current Affairs-Topics
Supermassive Black Hole Poses New Challenges to Astrophysics
An international team using NASA’s James Webb Space Telescope (JWST) and the Chandra X-ray Observatory has discovered a unique black hole, LID-568, which is feeding at a rate 40 times higher than previously thought possible. |
Background on Supermassive Black Holes
Supermassive black holes are commonly found at the centers of galaxies, with masses ranging from millions to billions of solar masses. For example, Sagittarius A, the supermassive black hole in the Milky Way, has a mass of about 4.3 million solar masses. However, the exact mechanisms behind their massive growth remain unclear.
About LID-568
Location and Discovery:
LID-568 is a low-mass supermassive black hole discovered 1.5 billion years after the Big Bang. Initially identified by the Chandra X-ray Observatory, it was further studied using JWST’s infrared capabilities.
Exceptional Growth:
With a mass 10 million times that of the Sun, LID-568 is growing at a rate far beyond the Eddington limit, defying traditional black hole growth models.
Primordial Black Hole:
It is speculated that LID-568 could be a primordial black hole, possibly formed from the collapse of gas clouds or early star explosions rather than through the typical stellar collapse process.
Feeding Mechanism and Eddington Limit
The Eddington limit defines the maximum rate at which a black hole can accrete matter before the outward radiation pressure from the infalling material balances the black hole’s gravitational pull.
LID-568 has surpassed this limit, feeding at a rate nearly 40 times higher than expected, a phenomenon known as super-Eddington accretion. This allows black holes to grow at an unprecedented pace.
Significance of the Findings
The discovery of LID-568 challenges traditional black hole formation models. Previous theories suggested supermassive black holes formed from remnants of early stars or collapsing primordial gas clouds. However, these models struggle to explain how such massive black holes could grow so rapidly in the early universe, where material was scarce.
Implications for Black Hole Growth Models
LID-568’s existence implies that black holes may gain mass through brief yet intense feeding episodes. This suggests an alternative formation mechanism, enabling black holes to grow rapidly without depending on the prolonged accumulation of large amounts of matter.
More Related Articles